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MULTISTAGE ESTIMATION OF BIAS STATES
*IN LINEAR SYSTEMS

by

3. M. Mendet and H. D. Washburn

Depar~~~ent of Electrical Engineering V
University of Southern California
Los Angeles , California 90007

ABSTRACT

This paper provides an alte rnate , constructive derivati on of

Friedla.nd ’s method (R ef. 1) for recursive bias filtering; and , extends

his meth od to the case where we may wish to increase (or decrease) the

number of biases. We show that it is possible to add (or delete ) bias
states in such a manner tha t previously computed quantities can be used
to obtain new estimates of the dynamical sta te vector and the now -larger
bias vec tor. Adding (or deleting) bias states to important when , for
example , the bias states are us ed to model cons tant , but unknown ,
instrumentation error sources , of which there can be a large number.
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I. INTRODUCTION

We shall be interested in estimating states , z and b , for the

following (c ontinuous - or discrete-time) sys tem , which is assumed to be

the actual. sys tem or truth model:

0(x) Ax +B b  + ~ ; ~.(0) (1)

b = 0 ; b(0) = b (2a )

::d 

b(k+l ) = b(k) = b (2b)

z ( I~4) = H x +  C b +  ~fl (3)

In these equa tions , we use operator 0(x) to denote either x(t) or x(k+l) ,

and we do not show the explicit dependence of vector and/or matrix

quantities on time. In this manner , we are able to present results for

continuous-time and discre te-time sys tems simultaneously. The

conditioning notation on the measurement is to remind us of the model

which is associated with the measurement; 
~~

( . 4) will. be referred to

as the actual measurement. Models other than d0 will be introduced

below . In 4 x c  R~~, A c  R f l X f l , b e  R r , B c  R T1
~~~, ~~ R~~, LC

sx n  sx r  $M c  fi Cc  R • and l ie R ; and , 
~~

( . )  and~~ ( . )  are gaus sLan whtte

noise processes for which

= 0 and E C U  = 
2. (4)

E(~~ (t) g ’ ( r ) 3  = Q 8(t- r) or Ef g (k)~~’( 2)~ = ~~ (5)

= R 5(t-T ) or E(l i (k) L 1(L)}  = R (6)

-2-
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*and

(7)

Friedland (Ref. 1) describes a very interesting and practical
procedure for estimating the dynamical states , x , and the cons tant, but
unknown bias states, b, for system Me shows tha t the optimum
estimate of x, ~~~~ and its associated error covarianc e matrix , P , can— —  x Vbe expr essed as

• x = x + V b  (8)
and

P P  + V P V ’  (9)x x2 x b x

where ~ is the bias-free estimate of x , computed as if no biases were
present, C is the optimum estimate of the bia s , and Vx is a matrix which
blends the estimates x and b together to give x , the bias corrected
estimate of x. Matrices P and P are defined in Section II._______ — b

In Fried.land ’s deriva tion , he augments the bias states to the
dynamical. states and show s that the resulting Riccati equa tion decomposes
so that is computed via Eq. (8). This derivati on is algebraic in nature ,
and unfortunately, cannot be applied (or , extended) to more gene ral
dynamical systems (i.e. , sys tems where b i s  time varying). For this
reason we present an alternative approach to FHedland’s deriva tion. We
assume , at the onset , the existence of the decomposition for ~ in Eq. (8);

assume a specific structure for b; require that i and b be unbias ed
estimators of x and b, respectively; and minimize the trace of the
error covariance matrix of i and b , with respect to a design matrix
which appears In our assumed estimator of b .  We then demonstrat e that

A

the resulting i and b are Indeed~~~~ minimum-variance estimators of z

* 
~~~~> E~ j~~’) = 0 , always.

_ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~



and b; hence, our assum ed dec omposition of ~ is a valid one.

Our derivation method, which is patte rned after the A thans and Tsc’
derivation of the Kalman filter (Ref. 13), is cons tructive in nature , which

is important because it affords us the possibility of extending Friedland’s
results to more general classes of parti tioned dynamical. sys tems. Such
extensions , which are beyond the scope of the present paper , will be
described in a subs equent paper.

Some extensions of and work related to Friedland’s decomposition
can be found in R efs. a , 3 , 5, 6, 7 , 8 , 9, and 19. Agee and Turner
(R ef . 5) augmented the bias states to the dynamical states and s tudied
conditions under which ~ can be decotnposed as in Eq. (8). They showed
tha t there are three basic requirements for a gene ral linear filte r to be
decomposed as in Eq. (8): (1) V mus t satisf y a specifi c equation;
(2) a gain condition of the form KA = K— + V K~” mus t exist (the gains in

K K
this equation are related in an obvious way to estimates ~~~~ 

and 
~~.); 

and
(3) Eq. (8) must  be true for  all. t (k) including t 0 (k = 0). Lin and Sage
(Ref. 2) formulate Friedland ’s problem in a different manner. In their
approach , the bias s tates are thought of as unknown constant mean values
of plant and measurement noise processes. The dynamical states are

estimated as usual, whereas the unknown means are estimated using the

maximum-likelihood formula tion. Godbole (R ef . 3) has shown that Lin
and Sage s results are identical to Friedland ’s. Biertnan (Ref. 19) has

obtained Frtedland ’s decomposition using the square-root inf ormation

filter , and , has extended Frtedl.and ’s results to smoothing. Additionally,

he gives matrix V the interesting and us eful. interpretation of a

sensitivity matrix; I. e., V = gra d x •K .  *

b

In some applicati ons , the bias states are us ed to model. cons tant

instrumentation error sources (R ef. 15), of which there can be a large

number (e.g. , 50). It can happen that not all of the error  sources are
significan t, so that some of them should be deleted from the final filter;

-4-
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• or , that significant error sources may have been initially neglected , and

should be included In the fina l filter. We are als o interested in knowing

whether or not it is possible to extend Friedland ’s decomposition t~ the

situation where b is of variable dimension; but , in such a manner that all.

preceding calc ulations associated with obtaining x(k) and ~
‘(k) , for b of

dimension r 1, do not have to be completely redone when b becomes of

dimension r2, where r2 > r1 (the case r2 < r 1 is similar , but is not

discussed in this paper). This extension is described in Section IV.

Blerman (R ef. 19) has obtained simila r results, using a square-root

information filte r approach.

Some important preliminary results are presented in Section II.

A parallel. development of both the discrete- and continuous-time

decomposition, Eqs. (8) and (9), usIng our constructive approach , is given

in Section III. The extension of Friedland ’s decomposition to the situation

where b is of va riable dimension is discussed in Section IV. Proofs for

all theorems are given in appendices.

II. PRELIMINAR Y RESULTS

R ecall that x in Eq. (8) is the bias-free estima te of x , computed

as if no biases were present. It is obtained by suppressing the bias states,

b , In. ‘0 and applying the following Kalman filte r to the resulting ays tem :*

0(i) = (A - K H )  ~ + 

~~ 
L( ’ 1í

~ 
(10)

For discrete-time sys tems , K = K ( l ~+ 1) and H H(k+ 1); matrix 
~

is the Kalman gain matrix for calculati on of ~~~.

To facilitate our development of Eqs. (8) and (9), it Is mos t

convenient to Introduce the following artificial system ,

* For discrete-time systems , change (A -~~~~
H) In Eq. ( 10) to (A 

~~~~~~~~

-5—
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1 
= A x 2 + ~ ; x~~(0) (11)

~~ tz(. I1~) = Hx 2 + ~ (12 )

where x 2 c and all. other qua n tities are as defined for J~. Only the

actual measurement, 
~~~~ 

I I~
) exists ; artificia l measurement y ( .  I 12 ) ~

non-existent, but , is useful for analysis purposes. Thoug h we shall use

L(• I Iz ) in our analyses , it will not appear in any of our final results .

Let denote the estimate of arti fi cial state vector x
2 using the

*artificial measurement 
~~~~~~~ ~ /~

); i. e.,

O( z) = ( A K  H ) . 2 + K Z(. Ifs) (13)

Observe tha t the Kalmari gain matrix for calc ulation of is exactly the

same as for the calculation of ~~~~, since the well-known equations for the

Kalman gain matrix (and associated Riccati equations) do not depend on

the measurement process.

The following error processes and error covariance matrices will

be used during our developments:

(14a)

x x - x  (14b)

b = b - b  (14c )

~~~~~~ 
ECx e b

~
3) (15)

\~~ bx ~ b J \E ~ ~ e a
t
e ) E ( 

e �.
‘
e ~

• * For discrete-time systems, change (A _
~~~~

H) in Eq. ( 13) to (A _ K
~~HA).

- 6.



P = E (x x’ 3 (16a)x2 —Z e —2e
and

P E f b  x ’ 3 (16b)bx
2 

—e —2e

For discrete-time systems , all. error c ova riances , as well. as estimates

are for filtered quantities (I.e., = ,~ (k I k) and P = P (k l k)) , unless

otherwise noted.

The following theorems, which are proved in Appendix A, connect

the states x and x2
, and estimators and

Theorem 1. If x (O)  = x
2(Q) 

and A Is n x r, satisfying

0(A) = AA + B ; A(0 ) 0 , (17)

then

(18)

Theorem 2. If ~
‘(O) x 2 (O) and It is n X r , satisfying (for

continuous-time sys tems)

X = (A-K H)X÷ K ( H A + C )  (19a )

or (for discrete-time systems)

A(k+ 1) = Ci - K H ~ A A(k) + £ HA (k+ I) + C(k+ ifl (19b)

where A ( 0 ) 0, then

(20)

Matrices A aud It are connected , as we show in:

-7-



Theorem 3. Let V A - X. Then V,~ satisfies the following

equa tion (for continuous-time’ systems )

V = ( A - K  H ) V  + ( B - K C )  (Zia)x x x

or (for discrete-time systems)

V (k+1) = Cr - K NIE A V
~

(k) + B~ - I C(k+ 1) (Z lb)

where V (0) 0. VK

Matrix V ,  in Theorem 3 , is , as we show below , precisely the

same matrix which appears in Eqs. (8) and (9).

III. DERLVA TION OF FRIEDLAND’S DECOMPOSITION

A. Introduction

In this section, we assume that x and b can be estimated from the

estimators

A A

• x~~~~~~~+ V b  (22)— —
and

0(b ) = C 1 b + G2 ~~ 
11~) + C3 x (23)

where ~ is the bias-free estimate of ,c , defined in Section II , and C 1
, C2 ,

C3 
(which are matrices of appropriate dimensions ) and V~ are determined

• such that: (1) x and are unbiased estimates of x and b, respectively,

and (2) the trace of the error covarla nce matrix for and is minimized.

We then show that the resulting estimators are the op timal estimators of

x and b.

-8-
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B. Unbiasedness of the Estimators

The following two theorems demonstrate how C , C and V mus t1 3 . x
be chosen so t h a t x  and b , glven by Eqs . (22) and (23), respectively, are
unbiased estimators of x and b. Proofs of these theorems are given in
Appendix B.

Theorem 4. ~ is an unbiased estimator of b , iff

• E( b(0) 3 = b (24)

and (for continuous-time systems)

G1 
= -C2 ~~~~

‘X 
+ C) (2~~.)

G3
= -G2

H (26a )

or (for discrete-time, systems)

• F
• G 1(k +l) = I - C2(k+l ) S(k+l) (2 5b)

G3
(k+1) = -C2

(k+1) HA (26b)
where

S(k+1) = HAV + HB + C(k+1) (27)

Theorem 5. if S is an unbiased estimator of b and v is as— — x
given in Eq. (21), then x Is an unbiased estimator of x.

Theorems 4 and 5 show that if V is computed in a specific

• manner , and (fo r continuous-time systems)

= c2 C y(t~J0) - (HV + C) ~ - H~ ~ (28a)

-9-
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or (for discrete-time sys tems)

b (k+1) = [t - G2 (k+1)S(k+lfl b(k)

+ G 2(k+l)Ey(k I .,10) 
- HA~~~~~~~] , (28b)

then ,~~ and b are unbiased estimators of x and b in I . Observe that V— — — — 0 x
(which , as we pointed out in Section 1, is a sensitivity matrix) maintains
the unbiasedness of the estimator x , whereas C1 

and C
3
, chosen as the

preceding functions of C2, maintain the unbiasedriess of the estimator

The only remaining matrix of design variables is C
2
.

C. Optimal Cain Matrix, C2

Matrix C
2 is chosen such that the trace of the error covariance

matrix for the iZand b estimators is minimized. That matrix , for 4,
denoted P ( .) ,  has been defined in Eq. (15).

Theorem 6. If p~~ (0) = 0, then
2

= o ~~ or Yk (29)
2

P P  + V P V ’  (30)x x b x

* ‘I

and

P V P  . (31)xb x b

so tha t

*Agee and Turner (Ref. 5) show that theLr gatn c ondttion holds if Eq. (31)

is satisfied. A gain condition, comparable to theirs , does not fall. out of

our derivation.

-10-
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I

P 0 V V

P(.) = 

(:2 
~ ) 

÷ (.
~~
) 

P~
(_) 

(32)

The proof of this theorem , as well as the other theorems in this
*paragraph ,  are given. in Appendix C. Matrices V and P are notx2 V

functions of C2 ; hence, minimizing tr P( .)  with respect to C2 is

equivalent to minimizing tr V~~~~ V’, and subsequently tr with respect

Theorem 7. tr 
~ b 

is minimum with respect to C2 1ff , (for

continuous-time systems)

* -1
G2 P

b 
(MV +C) B (33a)

or (for discrete-time systems)

* 1
C2 (k+l) P S’(k+l)CS(k+l ) P S’(k+l) +H P (k+l I k)H’+B(k+l)] (33b)

b b x2

whe re

P (k+1~k) = A P (kl k)A’ +Q . (34)
K

2

Additionally, the optimal error covaria nce matrix for 
~ b can be computed

from (for continuous-time systems)

~b ~
P
b

(HV + C ) ’ R ’(HV + C)P
b 

(35a)

or (for discrete-time systems)

* A

Matrix P , defined in Eq. (l6a), is associated with x for 4’ .—2 2

— 1 1 —

L _____________ 
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*Pb (k+l) = Cz - G2 (k+1) S(k+lflP b (3 5b)

ID. Summary

• It is helpful., at this point , to summarize our results . We let

C; = K,0. For continuous-time sys tems we have shown tha t

b = _K
b (HV + C ) C’ + K .b I ( t Ij )  (36)

where

1(tIJ0) = y(t I1~
) — H~ (37)

Kb(t) = 

~b 
(HV + C ) ’ R ’ (38)

~b b~~~~x
+ R

~~~~~
Wx + C

~~~ b ~~~~~ 
(39)

and V (t) is computed via Eq. (Z la). For discrete-time sys tems we have
shown that

~~(k+1) = [ I  — K..0 (k+ 1)S(k+ 1)]b (k)  + K b (k+ 1) 1(k+1 IJ~
) (40)

where

j(k+1110) = 1(k+1I1) -H A ~ (41)

K
b

(k+l ) = Pb S ’(k+l) [S(k+ l)P
b

St (k+ l )  + H  E~~ (k÷ 11k) H ’ ÷ R (k÷1) 1 1

2 
(42 )

Pb (k+l ) = Ci- Kb (k÷ l ) S (k ÷ :f lPb (k) 
~~~~~ 

(43 )



~~~ p.uuuuuu....uuu.u.u....uuuuuiuL~~~~~~~’v~~~: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • ~~~~~~~~~~

and S(k+ 1) Is computed via Eq. (27), which uses V (k) from Eq. (21b). In
both cas es , ~ is computed via Eq. (22). ,

Observe tha t the bias-free estimator , 
~~~

‘

, couples into the calcula-
tion of b , through calculations of j (. I~,4) and V ;  but, b in no way

affects ~~
‘
.

A A

E. Es timators x and b are the Minimum-Variance Estimato rs

Kalnian (Refs . 10 and 11) has shown that a necessary and sufficient

condition for an estimator (b or~~ ) to be the optimal. (i.e. , minimum-
variance) estimator is , that (for continuous-time sys tems )

~ L’(
~ I/~)} 

= 0 , 0 <~~ < t (44a )

or (for discrete -time systems)

Ef(
~~~
)

~~~(iI4)  

J 

= 0 , 1 0 , 1, 2 , . . . , k (44b)

In Appendix D, we use thes e cri teria to prove:

Theorem 8. Our optimal linea r estimators of and b , given by
Eqs. (22) and (for continuous—time systems) (36) - (39) , or (for discrete-

time systems) (40) - (43), are the optimal estimators of x an d b i n

With this result we have completed our cons truc tive derivation of
Friedland ’s decomposition.

— 13 —
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IV. MULTISTAGE ESTIMATION OF BIASES H

We now direct our attention at the problem of adding (or deleting)
bias states .  We wish to do this in such a manner that previously computed 

•

quantities can be used to obtain the new estima tes of x and b in ,/ . Let— — 0
b = cot (b 1 , b 2 ), where b 1 e R and b 2 c R ‘. Suppos e tha t, initially,
b = b

1; then reduces to ‘1’ where*

1xi~+~ 
= A x 1(k) + B1 �.1 .~~ ~ 5~~(o) (4 5)

d ..J b 1(k +l) = b
1

(k) = (46 )

LL~
hh1) = Hx

1(k) + C1 b 1 + 11 (47)

All quantities in are analog ous to thos e in 1
0
. When we believe that

b b 1, then y (klJ1) is the :ctua l measurement.

Let us assum e thatx 1 has been computed for J
~
, as

A

x x + V  b , (48)—I —1 x
1 — l

* *where x 1 is the bias-free estimate of x 1 , and and V are computed
— 

. 
x l

from our results in Section III , with the appropriate substitutions , tha t
B = B 1 and C = C 1. Now , let us add additional bias states, b 2 , so that
our sys tem is 

~~~~~~~~~ with b = cot (b 1, b 2 ), B = (B1 J B2), and C = (C 11 C2 ).
We wish to estimate b in f

~ 
using the alread y computed b 1

*, and , we

to compute x by means of Eq. (22) using b 1 and the alread y com puted

~~1
.

*ThII part of our paper , which deals with recursive bias estimation,
is presented only for discrete-time sys tems , since it seems to be most
pra ctical for such systems.

-14-



• The key to solving this problem is to recognize that b , given by
Eqs. (40) - (43), can be associated with the following auxiliary paramete r
estimation problem (R ef. 16): ObtaIn minimum-variance estimates of the

constant parameter vec tor , b , from the (auxiliary) measurement equation

(k+1) S(k+1)b+ v’(k+l) (49)

where (k+1 ) is , by definition , a zero-mean white noise sequence , and

R (k+1) +H(k+ 1) P (k+l I k) H’(k+l ) (50)
• K

2

Ac tually, ‘ ‘(k+l) = i(k+ 1Ii~4)~ and , we see from Eq. (41) that ~ (k+ 1) can

be assembled from the actual. measurement Z(k+ 1 14) and the bias-free

estimate of x , ~~
‘
; i.e. ,

= L(k+t lJ~) - RA~~~ (51)

Numerous authors (B efs . 4 , 8, and 14, for example) have developed

algorithms for estimation of a constant parameter vector which are

recursive in the dimension of that vector , as well. as sequential in time.

Mendel (Theorem 3, Ref. 4), for example , shows that

A A *  A
b 1(k+l) = (k+1) - C(k+l)  b

2
(k+1) ( 52a.)

and

= C(k+ 1) C u 2 (k +1) - 
C i z

(k+1) b~~~
’(k+1)] (SZb)

where* G(k+l),  C(k+l) ,  u 2 (k+ 1), and G 12 (k+ 1) are computed from other

*Our statement of Eqs. ( 52a) and (52b) retains Mendel ’s notation; matrix

C(k+l) in (52b) is not the same as our matrix C.

- 1 5 —
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equations given by Mendel. These equations are not needed for our

purposes; hence , they are not given.

We conclude,, therefore , that it is indeed possible to estimate b
in 4’~ 

using the already computed b~~. This is accomplished by applying
a parameter estimation algori thm , which is recursive in the dimension of

• b and sequentia l in time, to estimation of b for the auxiliary measurement

r (k+1).

The following theorem demons trates how to compute x(k) fr om
- **  A

previously computed x 1(k) and b 1(k), and , from b2(k). These results are
similar to those in. Bierrnan (Ref. 19).

Theorem 9. Given ~
‘
1(k) and b~~(k) , for State estimate ~ (k),

for J~~~
, can be computed from :

~ (k) = ~ (k) + V (k) ~~~(k) + Cv (Ic) - V (k) G(kfl ~ 2
(k) (53 )xl x2 x1

where , for i = 1,2 ,

V (k+1) = CI - i~~ (k+ 1) M (Ic+ 1)]EA V (k) + BjxI

— K (Lc+ 1) C1(k +1) ; V (0) = 0 , (54 )

and , ~ 2 (k) and C (k) are computed from an algori thm which is rec ursive

• In the dimension of b and is sequential in time , such as the one in Mendel
(Theorem 3, Ref. 4).

The proof of this theorem is given in Appendix E. It is important
to understand tha t (k) = (Ic); i. e., adding (or deleting) biases does not
affect the “bias-free estimates. ” We see , from Eq. (53), that x (k) does
not have to be completely recomputed when biases are added. In fact ,

another way to write Eq. (53 ) is , as •

- 16-



(Ic) 
• 

= 
1(k) + C V (Ic) - V (Ic) G (kfl b

2
(k) (55)

— — .  K
2 

X
1

which makes this even more evident.

V . CONCLUSIONS

We have rederived Friedland’s decomposi tion, Eq. (8), by m eans
of a cons tructive approach , which tends itself to studying extensions of his

results to more complex sys tems, where biases are themselves modeled

as first-order Markov processes (Ref. 17, for example). These extensions

have been made and will be reported on in a futur e publication. Our
constructive approach gives some insigh t and physical m eaning Into

certain quantities, such as V ,  which appeared in Fri edland’s solution.

The key to our constructive approach is the artificial system, J~
; for ,

through tha t system, we ar e able to ma ke connections between x and
as wefl as~~

’and x
2
.

As a consequence of our approach , we showed, that ~ can be given
the Interpretation of a minimum-variance parameter estimator which is

associated with an auxiliary measurement. With this interpretation, we

can use well-known algorithms for estimating the bias which are recursive
in the dimension of the bias as well as sequential. in time. ~ enc e, we
have shown that it is possible to add (or delete) bias states in such a

manner that previously computed quantities can be used to obtain new

estimates ofxand b.

-17-
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APPENDIX A. PR OOFS OF PRELIMINARY RESULTS

The proofs presented in this and subsequent appendices are for
the continuous-time case. It is felt that these proofs give the essence of
the constructive method in a clearer fashion than those of the discrete-time
case. Many of the discrete-time proofs are induc tive in nature.

1. Proof of Theorem 1

From Eqs. (11) and (17), It follows tha t

i(x + J ~~) = 

~ 2 +
~~~ 

= A(x
2+Ab)+ Bb+ ~ ; (A- i)

but, x 2 (o) + = 

~z (o) = x(o); hence , x 2 + tt b satisfies the same
differential equation (d. e.) as x. By uniqueness, therefore, x 2 + t i b  =
‘which is Eq. (18).

2. Proof of Theorem 2

• From Eqs. (13) and (l9a), it follows that

A —

~~~~~~~~~~~~~~~~~~~~~~~
p 

= 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (A -Z )

Additionally, from Eqs. (3), (12), and (18), we see tha t

L(t110) = L(tII2
) +

~~~ b +  Cb (A-3)

so that Eq. (A -2) can also be written , in terms of L(t I 4)~ as

-18-
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• (~~~+X b )  = ( A _ K
~~

H) (J
~2 + rb) + K 1(t jj ) ;  (A-4)

A — A —~ A —• but , x 2 (0) + A (0)  b = 
~ z (0) = x(0 );  hence , x

2
+ A b sa tisfies the same

d. e. as 
~~~. By uniqueness, theref ore , 

~~
+ A b  = 

~~~, which is Eq. (20).

3. Proof of Theorem 3

To begin, observe from Theorems 1 and 2 that V (0) = A(O) - r(0) = 0.

Then, using Eqs. (17) and (1%), we see that

VX A - ~~~ = ( A - K  H)V + ( B - K C )  , (A-5)

which is Eq. (Z ia).

I!

— 1 9 —

_ _  _ _ _ _  _ _  _ _  
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• APPENDIX B~ UN BIASEDNESS PR OOFS

1. Proof of Theorem 4

From Eqs. (2a) and (23), we see that

= -G1
b - C2~~(t I I0) - G 3~~ (B-i)

Substitute Eqs. (3), (18) and (20) into Eq. (B—l),take the expected value of
the resulting equa tion. and use the.fact that is an unbiased estimator

of to show that

= -G1E L~~} - ( C2 H A + G2 C + G 3~~) b

-(C2H + C3) E C x 2 ) (B-2)

To prove sufficiency, assume E1b~ = Elb); then, from Eq. (B-2),

G1+C 2HA. + G 2C +G 3 A a (B-3)
and

G2
H + G

3 
= 0  (B-4)

Solve Eq. (B-4) for C
3 to obtain Eq. (26a); substitute tha t expression

Into Eq. (B-3); and use the fact , from Theorem 3, tha t V = A - A , to

show that

01 
= -G~ (H V + C) , (B-5)

which Is Eq. (25a).

To prove necessity, substitute Eqs. (25a) and (Z6a) into Eq. (3-2),

to see that

-20-
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~~- E( b - b 3  = C
1

E I b - b )  (3-6) 
H

Because of Eq. (24), the unique solution to this equation is E( ’b - = 0;

hence , b is an unbiased estitn&te of b.

2. Proof of Theorem 5

From Eqs. (18), (8), and (20), and Theorem 3, we see that

= 

~—2~~~2~~~ 
V ( b - 1 )  (B-7)

Now , is the optimal (unbiased) estimate of so that E Cx 2- 
~~~~~~~~~ 

= 2.~
hence, EC x - = 0 , which proves that is an unbiased estimate of x.
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“:1APPENDIX C. OPTIM IZA TION PROOFS

1. Proof of Theorem 6

• To begin, we show that if p~~ (0) = 0, then P~~ = 0 for all t. We
2 2

obtain a differential equation for P~~ by differentiating Eq. ( 16b),
2

= E C b ~~~~~1 + E( b~~~~~~ ) (C-i)

From well-known filter results (Ref. 20, for example), we know that

~ 2e 
= (A

~~~~xM
~~ 2e + .~ - K u  (C-2)

Addi tionally, f rom Eqs. (l4c), (2a), and (28a), we find tha t

= -ca l: (HVx + C) 
~ e + H

~~2e ÷ 
I 

] (C-3)

It is then relatively straightforward to show that

E ( b x~~~) = -02
( H V + C )  P~~ - C

2
H P +  ~~~C 2

R K ’  (C -4)

and

Ef 
~~~~~~~ 

= P~~~~~(A - K H) ’ + ~~C2 R K’  (C-5)

Substituting Eqs. (C-4) and (C-5) Into Eq. (C-I), making use of the fact

that HP  = R~~’ , we see that P satisfies the following linear homo-x bx2
geneous d. e.:

-22 -
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— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~

= -G2 (HV + C) P~~ + P~~~~(A - K H )  (C-6)

Since P~~ (0) = 0, it follows tha t P~~ 0, all t.
• 2 2

• Next , we develop the expression for P in Eq. (30). From Eq.
( B— 7 ) ,  we see that

P = P + V  P + P  V’ + V  P Vt 
, (C-7)x x2 x b x 2 x2b x x b x

and this expression reduces to Eq. (30), since P~~ = 0.

2

• In a similar manner, it follows from Eqs. (3-7) and (29), that

~xb = P~~ + V 
~ b = V 

~ b (C -8)

which is Eq. (31).

Finally, to obtain Eq. (32) for P(t), substitute Eqs. (30) and (31)

into the right-hand side of Eq. (15) and collect the terms as shown.

2. Proof of Theorem 7

We seek to minimize tr with respect to G
~

, whe re

= 
~
Gz ( H V + C ) Pb - P

b
(HV + C ) ’ G~~ + G

2
R C~~ • ( C - 9 )

Equation (C-9) follows , in the usual. manne r , from Eqs. (C-3) and (29).

Our approach is the matrix minimum principle , in the manne r of Ref .  12 ,

applied to the following Hamiltonian , H:

-23 -
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H = tr C P
b

(t) T ( t ) ]  (C - l a )

From the c ondition tha t ~ H/ ~~G 2~ 0 , and gradient matrix operations , we see
• tha t tr 

~b 
is minimum with respect to C2, if

• C2 = 
~ b 

(H’
~
T

~~
+ C ) ’  R

1 
, ( C - l i )

which is Eq. (3•3a).

Equation (3 5a) follow s upon substitution of Eq. (C- lI )  into Eq. (C-9).

-24-

_____ _ _ _ _ _ _ _  
ii



A PPENDIX D. OPTIMA LITY PR OOF

To prove Theorem 8 , we use the orthogonallty princ iple (Refs . 10

and 11) stated in Eq. (44a). Becaus e the details of the proof are somewha t

intricate, and do not contribute to further understanding of this paper ’s

problems , we give a brief sketch of the proof. Details can be found in

the second author ’s Ph.D. dissertation (R ef. 18).

From Eq. (B-7), we see tha t

1f”~e\ 1 
(E fx a Z’d4 ~~

’
\ (v\

Et ~ b )  ~.S(TII~)J~ = 
)+

~~~~~ 
) E f b L’(TI ./ 0) 3

(D-1)

Using Eq. (A-3) and the fact that is the optimal estimate for y-(tl I~
) i

it follows that Ef 
~~2e x.

’ ( ’  I = 0, all 0 < ~r < t. To show that

Ef 
~ e 

y ’(T I ‘O~~ 
= 0, all 0 < T <t , consider that expectation fir s t  for

0 < r < t and then for r = t. In. the former  situation , show from Eq.

(C-3) that E f b  y ’ ( r I  ‘O~~ 
satisfies a linea r homogeneous d .c.  with zero

initial conditions; hence, E (b 
~~~~ ‘O~

3 = 0, for 0 < r < t. For the

latter situation, use the fact that ~ is the optimal estimate for observation

equation (37); hence, 
~ e

(t) i’(t I 
~~~~ 

= 0 , so tha t

~
1

Ef b ( t) 1’(t I Ia ))  = E C �e ~
‘ ‘( t ) i  H’( t )  (D-2)

Finally, express (t) as a linear transformation of the measurements

over the inte rval C 0 , t~ and show that the right-hand side of Eq. (D-Z) is

zero. By these arguments , we have shown that our results give the

optimal linear estimators of x and b. Becaus e all noise processes are

gaussian , it th en follow s tha t our r esults give the optimal est imators of

x a n d b ( R . ef. 20).
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APPENDIX E. PR OOF OF MULTISTAC E RESU LTS

It is s traightforward to show , from Eq. (54), that

= (v~ I v~ ) . (E-1)

where V is defined in Eq. (21b) . From Eqs. (8) and (E -l) ,  i t follow s that

i = ~~~~+ V x b
1

+ V  
~~~~~ 

(E-2)
1 2

and , subs tituting Eq. (52a) into Eq. (E-2), we obtain Eq. (55).
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